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Background: Viral suppressors of RHIM-dependent activation of pro-necrotic RIP3 kinase are crucial for successful infec-
tion in mice.
Results: Human CMV blocks TNF-induced and murine CMV-induced necroptosis after RIP3 activation.
Conclusion: Necrotic membrane leakage is blocked in infected cells despite the activation of MLKL.
Significance: Viral inhibition of necroptosis will facilitate understanding of the final steps in this pathway.

Necroptosis is an alternate programmed cell death pathway
that is unleashed by caspase-8 compromise and mediated by
receptor-interacting protein kinase 3 (RIP3). Murine cytomeg-
alovirus (CMV) and herpes simplex virus (HSV) encode
caspase-8 inhibitors that prevent apoptosis together with com-
petitors of RIP homotypic interaction motif (RHIM)-dependent
signal transduction to interrupt the necroptosis. Here, we show
that pro-necrotic murine CMV M45 mutant virus drives virus-
induced necroptosis during nonproductive infection of RIP3-
expressing human fibroblasts, whereas WT virus does not.
Thus, M45-encoded RHIM competitor, viral inhibitor of RIP
activation, sustains viability of human cells like it is known to
function in infected mouse cells. Importantly, human CMV is
shown to block necroptosis induced by either TNF or M45
mutant murine CMV in RIP3-expressing human cells. Human
CMV blocks TNF-induced necroptosis after RIP3 activation and
phosphorylation of the mixed lineage kinase domain-like
(MLKL) pseudokinase. An early, IE1-regulated viral gene prod-
uct acts on a necroptosis step that follows MLKL phosphoryla-
tion prior to membrane leakage. This suppression strategy is
distinct from RHIM signaling competition by murine CMV or
HSV and interrupts an execution process that has not yet been
fully elaborated.

Regulated cell death is important for eliminating cells during
development and to guard the host from infection with micro-
bial or viral pathogens (1–3). The mitochondrial pathway of
apoptosis, mediated by the Bcl2 family proteins, contributes to
both development and host defense. In humans, Casp84 and

Casp10 initiate apoptosis triggered through TNF family death
receptors, although this pathway may switch to an alternate
receptor-interacting protein kinase 3 (RIP3)-dependent pro-
grammed necrosis outcome, called necroptosis, in cells with
adequate levels of this pro-necrotic kinase (2, 4 –7). In mice,
Casp8-dependent apoptosis and RIP3-dependent necroptosis
contribute directly to host defense (6) and are together dispens-
able for development (8). Programmed necrosis was initially
demonstrated in cultured cells subjected to Casp8 compromise
after death receptor activation (9, 10). The RIP3-mediated
pathway was implicated in the innate immune response to
vaccinia infection (11) and was shown to be physiologically
relevant against the natural mouse pathogen murine cytomeg-
alovirus (CMV). This betaherpesvirus specifically blocks
necroptosis to sustain infection (12, 13). In addition to death
receptors and virus infection, Toll-like receptor (TLR) activa-
tion and interferon-dependent innate immune signaling
unleash necroptosis (14 –16). Although there are strong paral-
lels in all of these settings (17), most of the mechanistic under-
standing of this pathway derives from studies on TNF receptor
1 (TNFR1) signaling (8, 11, 18 –23).

Although the host defense contribution of necroptosis first
emerged from studies of vaccinia (11, 24) as well as reovirus
(25), it was the elaboration of murine CMV M45-encoded viral
inhibitor of RIP activation (vIRA) that provided unambiguous
evidence showing the key role of necroptosis in mammalian
host defense (12, 13). vIRA blocks RIP homotypic interaction
motif (RHIM)-dependent interactions (26, 27) between RIP3
and other RHIM-containing adapters, RIP1 (11, 22, 23), DNA
inducer of interferon (DAI) (12, 13), and TIR domain-contain-
ing adapter-inducing interferon � (TRIF) (17, 28). Casp8 is the
well established mediator of apoptosis downstream of death
receptors, such as TNFR1, and TLRs, such as TLR3 (11, 22, 23,
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29). Necroptosis is mediated by a RHIM-dependent RIP1-RIP3
interaction activated downstream of TNFR1 (11, 22, 23), DAI-
RIP3 interaction during murine CMV infection (12, 13), and
TRIF-RIP3 interaction following TLR3 engagement (17, 28). A
Casp8-containing ripoptosome forms from preexisting cytoso-
lic components (14) to regulate extrinsic apoptosis and RIP3
kinase-dependent phosphorylation events necessary for the
execution of necroptosis (17). This signaling complex has
recently been implicated in a novel form of RIP3 RHIM-depen-
dent apoptosis (30). In necroptosis, RIP3 kinase activity drives
phosphorylation of and interaction with mixed lineage kinase
domain-like (MLKL) pseudokinase (31, 32) to form a necro-
some (33). These events commit cells to membrane leakage and
death, although the mechanistic details of execution remain
open (34 –36). Casp8 also contributes to Casp1 activation and
proinflammatory IL-1� production (37–39). Altogether, three
important points have emerged from recent studies on necrop-
tosis (2, 4 –7). (i) Large DNA viruses sensitize cells to necrop-
tosis by encoding inhibitors of Casp8 (8, 11, 24, 40). (ii) Murine
CMV encodes vIRA, a natural RHIM signaling competitor to
prevent necroptosis by blocking DAI-RIP3 complex formation
independent of RIP1 in mice (12, 13). (iii) The human patho-
gens herpes simplex virus (HSV1) and HSV2 encode inhibitors
of Casp8 activation that also suppress RHIM signaling in
human cells (41). All known RIP3 kinase-dependent necrotic
death pathways require RHIM-mediated signal transduction to
converge on common phosphorylation of the pseudokinase
MLKL (17, 34, 42), and all are blocked by vIRA (6).

Murine CMV M45-encoded vIRA also suppresses RHIM-de-
pendent apoptosis (27, 43, 44) and regulates NF-�B activation
(26) independent of virus infection; however, the physiological
importance of vIRA during infection is directed at necroptosis
(12, 13), which would otherwise eliminate infected host cells
and halt infection (45, 46). Thus, M45mutRHIM virus infection
fails to infect either immunocompetent or immunodeficient
mice (12, 47) but proceeds in Rip3�/� or Dai�/� (also called
Zbp1�/�) mice where other immune control mechanisms
remain operational. M45 carries out activities that are indepen-
dent of RHIM function, increasing RIP1-dependent NF-�B
activation immediately following infection and preventing
NEMO-mediated activation of NF-�B later in infection (43, 48,
49). Recently, the RHIM-targeted suppressor strategy has been
extended to HSV, where the large subunit of ribonucleotide
reductase (R1) suppresses necroptosis in human cells (41) in
addition to its role in suppressing Casp8-dependent apoptosis
(50). Surprisingly, HSV triggers necroptosis in mouse cells, and
this vulnerability is influenced by R1 RHIM signaling (51, 52). In
contrast, murine CMV vIRA suppresses cell death in both
mouse and human cells (41). Expression of the HSV R1 during
infection blocks Casp8 (50) and exposes cells to necroptosis
(41), a dramatic interplay between one viral gene product and
cognate-regulated cell death pathways (6, 47). Human CMV
UL36 (53) and murine CMV M36 (54, 55) encode the viral
inhibitor of Casp8 activation (vICA) (56, 57). Casp8 suppres-
sion prevents apoptosis and is necessary for successful infection
of monocyte-derived cell lineages (58) that control viral dis-
semination (59). In addition, both murine and human CMV
encode evolutionarily conserved suppressors that prevent acti-

vation of pro-apoptotic Bcl2 family members Bax and Bak (60 –
66). These viral countermeasures reinforce the central role of
cell death pathways in host defense against infection (6, 58, 67,
68). In addition, the human CMV major immediate early 1 (IE1)
gene product has been associated with cell death suppression
(69) and plays a crucial role regulating levels of viral and host
cell gene expression (70). An evolutionary dialogue seems to
have played out over hundreds of millions of years between
successful herpesviruses and their hosts such that perturbation
of Casp8 and RIP3 may contribute to inflammatory disease
driven by infectious and genetic insults (71, 72).

Here, we demonstrate that human CMV blocks necroptosis
induced by either TNFR1 activation or murine CMV infection
in permissive human fibroblasts transduced with human RIP3
(hRIP3). RIP3 transduction confers sensitivity to necroptosis
that is lost during cell propagation in culture, a condition that is
reminiscent of cultured mouse fibroblasts (11, 12). Human
CMV confers IE1-dependent suppression of necroptosis at a
step that follows RIP3 phosphorylation and activation of
MLKL. This death is independent of the viral UL138 modula-
tion of TNF signaling (73, 74). Thus, human CMV prevents
necroptosis through a mechanism distinct from either murine
CMV or HSV. We establish the core parameters through which
this alternate form of extrinsic cell death contributes to host
defense in humans and add to the list of evolutionarily ancient,
common cell signaling pathways against which human CMV
deploys countermeasures.

EXPERIMENTAL PROCEDURES

Reagents—Dimethyl sulfoxide (DMSO), cycloheximide, and
phosphonoformate were purchased from Sigma. Necrostatin-1
and MG132 were purchased from Calbiochem. Recombinant
human TNF and caspase inhibitor Z-VAD-fmk were purchased
from R&D Systems and Enzo Life Sciences, respectively. �-Pro-
tein phosphatase was purchased from New England Biolabs.
IAP antagonist/Smac mimetic BV6 was a gift from D. Vucic
(Genentech, Inc.). RIP3 kinase inhibitor GSK�840 was a kind
gift from P. Gough (GlaxoSmithKline). The following antibod-
ies were used in cell death assays, immunoblot (IB), and
immunofluorescence analysis (IFA): anti-Fas antibody (clone
7C11, Beckman Coulter), rabbit anti-RIP3 (ab72106, Abcam),
rabbit anti-MLKL (clone 58-70, Sigma), rabbit anti-
MLKL(phospho-Ser-358) (ab187091, Abcam), mouse anti-
RIP1 (clone 38, BD Biosciences), mouse anti-FLAG (clone M2,
Sigma), anti-Myc (clone 9E10, Santa Cruz Biotechnology),
mouse anti-human CMV IE1/IE2 (clone 8B1.2, Millipore),
mouse anti-pp65 (clone CH12, Virusys), mouse anti-murine
CMV IE1 (Croma 101, gift from S. Jonjic, University of Rijeka,
Croatia), rabbit anti-M45 (gift from David Lembo, University of
Turin, Italy), mouse anti-�-actin (clone AC-74, Sigma-Al-
drich), peroxidase-labeled horse anti-mouse or anti-rabbit IgG
(Vector Laboratories), Alexa Fluor 488-conjugated goat anti-
rabbit IgG (Invitrogen), and Alexa Fluor 568-conjugated goat
anti-mouse IgG (Invitrogen). Anti-FLAG M2 affinity gel
(Sigma) was used for IP experiments.

Plasmids, Transfection, and Transduction—To create
hRIP3-expressing lentiviral vector, hRIP3 open reading frame
(ORF) was inserted into pLV-EF1�-MCS-IRES-Puro lentiviral
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vector (Biosettia). Three-tandem FLAG epitope-tagged hRIP3
expression plasmid was constructed by inserting hRIP3 ORF
into p3xFLAG-CMV10 vector (Sigma). Overlap extension PCR
was employed to generate expression constructs of hRIP3
mutants, tetra-Ala RHIM domain (amino acids 459 – 462) sub-
stitution (mutRHIM), K50A, S227A, and K50A plus tetra-Ala
RHIM domain substitution (K50mutRHIM). For hMLKL
knockdown experiments, puromycin cassettes in pLKO.1-
hMLKL (32) or the pLKO.1 control scramble shRNA expressing
lentiviral vector (75) were swapped with the existing hygromy-
cin cassette. All plasmids were verified by DNA sequencing.
The M45-Myc and mRIP3 expression constructs in pTag5A
(Stratagene) and p3xFLAG-CMV10 (Sigma), respectively, were
reported previously (27). Transient transfections were per-
formed with Lipofectamine LTX with Plus reagent (Invitro-
gen). Lentivirus stock was prepared from 293T cells that were
transfected with pLV-hRIP3 or pLKO.1 constructs along with
psPAX2 (76) and VSV-G-expressing plasmids. Low passage
newborn foreskin fibroblasts (HFs) were transduced with len-
tiviral vector and selected with 0.5 �g/ml puromycin and/or 25
�g/ml hygromycin (Invitrogen).

Cells and Viruses—HFs and ihf-ie1.3, 293T, and 3T3-SA cells
were cultured as described (12, 70, 77). HT-29, IMR-90, and
human microvascular endothelial (HMEC-1) cells were main-
tained in DMEM containing 4.5 g/ml glucose, 10% fetal bovine
serum (Atlanta Biologicals), 2 mM L-glutamine, 100 units/ml
penicillin, and 100 units/ml streptomycin (Invitrogen). THP-1
cells from A. Kowalczyk (Emory University) were cultured and
induced differentiation to macrophages as described previously
(57). Human CMV strains were chosen to represent known
genetic variants that arise during propagation in cell culture.
Laboratory strain Towne-BAC, Towne�UL36, IE1-null virus
(CR208), and its repaired virus (CRQ208) were described pre-
viously, as was the parental virus TownevarRIT3 used in their
preparation (57, 70, 78). Laboratory strain AD169varATCC
and low passage strain Merlin strain were obtained from Amer-
ican Type Culture Collection, variant AD169-BAC was from J.
Munger (Rochester University, New York, USA), variant
AD169varDE was from M. Mach (Institute for Virologie, Erlan-
gen, Germany), low passage strain Toledo was from S. Plotkin
(Philadelphia, Pennsylvania, USA), and low passage strain
endotheliotropic TB40E-BAC4 was from C. Sinzger (Institute
for Virology, Tubingen, Germany). In experiments utilizing
UV-irradiated virus, the viral suspension was exposed to
254-nm light at 360 mJ/cm2 with a model XL-1500 Spec-
trolinker UV cross-linker (Spectronics Corp.) prior to infec-
tion. Virus titers were determined by a plaque assay on HFs or
ihf-ie1.3 cells. BAC-derived parental murine CMV K181-BAC
and M45mutRHIM viruses were described previously (12). All
human or murine CMV infections were performed at an MOI
of 3 or 10, and cells were incubated for 1 h with virus before
changing the medium.

Cell Viability Assay—Cells (5,000 cells/well) were seeded
into Corning 96-well tissue culture plates. 16 –24 h postseed-
ing, medium was replaced with 50 �l of viral inoculum. Alter-
natively, cells were treated with the indicated reagents, and sol-
vent, DMSO, was kept constant for all experiments. Unless
otherwise indicated, 30 ng/ml TNF, 5 �M BV6, and/or 25 �M

Z-VAD-fmk were used. The concentration of each reagent was
optimized to exhibit specific efficacy without detectable cyto-
toxicity. Cell viability was assessed by measuring the intracellu-
lar levels of ATP using the Cell Titer-Glo luminescent cell via-
bility assay kit (Promega) according to the manufacturer’s
instructions. Luminescence was measured on a Synergy HT
multidetection microplate reader (BioTek) (12). For real-time
imaging of cell permeability with IncuCyte Zoom (Essen Bio-
science), cells (15,000 cells/well) were seeded into Corning
48-well tissue culture plates and cultured in medium contain-
ing 50 nM SYTOX Green (Molecular Probes) or 5 �M pro-
pidium iodide (PI) (Sigma) (15).

Immunoblot and Immunoprecipitation—IB and IP were per-
formed as described previously (77, 79). Clarified cell lysates
were incubated overnight with anti-FLAG M2 affinity gel and
washed four times prior to analysis. �-Phosphatase treatment
was done according to the manufacturer’s instructions. Cell
lysates and IP samples were separated on an SDS-polyacryl-
amide gel, followed by transfer to a polyvinylidene difluoride
membrane (Immobilon, Millipore), probed with primary anti-
bodies, incubated with the HRP-conjugated secondary anti-
body, and detected with ECL Western blotting detection re-
agent (GE Healthcare).

Microscopy—IFA and transmission electron microscopy
(TEM) were performed as described previously (77, 79). For
IFA, cells were fixed in 3.7% formaldehyde and incubated in
blocking buffer containing 0.5% bovine serum albumin and 5%
goat serum. After incubation with rabbit anti-RIP3 or mouse
anti-murine CMV IE1, goat anti-rabbit IgG conjugated to Alexa
Fluor 488 or goat anti-mouse IgG conjugated to Alexa Fluor 568
was added, respectively. The cells were incubated with DAPI
(Roche Applied Science) to stain nuclei. Images were acquired
on an LSM 510 Meta confocal fluorescence microscope (Carl
Zeiss). For TEM, cells were fixed in 2.5% glutaraldehyde in 0.1 M

cacodylate buffer (pH 7.2). The cells were washed in 0.1 M caco-
dylate buffer, postfixed with the same buffer with 1% osmium
tetroxide, washed, and dehydrated through a graded series of
ethanol to 100% and embedded in epoxy resin. The sections
were counterstained with uranyl acetate and lead citrate.
Images were acquired on a JEOL JEM-1210 transmission elec-
tron microscope operated at 75 kV.

Statistical Analyses—Statistical comparisons employed para-
metric evaluation using Student’s t test (GraphPad Prism soft-
ware). All experiments were repeated at least three times with
similar results, and data are represented as the mean � S.D.

RESULTS

Necroptosis Sensitivity of Human CMV-susceptible Cells—
We initially sought to identify human CMV-susceptible cells
capable of supporting RIP3-dependent death. Human colon
carcinoma HT-29 cells showed the expected pattern of apopto-
sis when treated with TNF (T) together with BV6 (S), an IAP
antagonist (also called a SMAC mimetic) that reduces polyu-
biquitination of RIP1 and increases sensitivity to cell death (80),
and the death pattern switched to necroptosis, as expected,
when the broad caspase inhibitor Z-VAD-fmk was employed
(V) (22, 41). When evaluated under similar conditions, CMV-
susceptible HFs, HMEC-1 cells, and THP-1-derived macro-
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phage-like cells were insensitive to T alone, T � S, or T � S � V
(Fig. 1A). Like HFs, CMV-susceptible, commercially available
IMR-90 fetal lung fibroblasts were also insensitive to treatment
with T, T � V, T � S, or the combination of all three (data not
shown). Undifferentiated THP-1 cells, which are not suscepti-
ble to CMV, were sensitive to necroptosis (Fig. 1A), although
these cells resisted S alone, S � V, or T � S across a broad range
of IAP antagonist concentrations from 0.01 to 3 �M (data not
shown). THP-1-derived macrophages were insensitive to death
elicited by any treatment combination (Fig. 1A). The pattern of
cell death in undifferentiated and differentiated THP-1 cells
was similar to the behavior of primary macrophages (81).
HMEC-1 cells were sensitive to T � S apoptosis, and death was
blocked by caspase inhibition. IB analyses were used to assess
levels of hRIP1, hRIP3, and hMLKL in the different cell types
(Fig. 1B). HFs or IMR-90 fibroblasts had readily detectable
hRIP1 but low levels of hRIP3 and hMLKL compared with
HT-29 cells, suggesting that resistance may have been dictated
by inadequate levels of key mediators (11, 12). hRIP3 and
hMLKL levels were low in HMEC-1 cells, consistent with the
inability of these cells to support necroptosis. Undifferentiated,
necroptosis-sensitive THP-1 cells had readily detectable hRIP3
but low levels of hRIP1 and hMLKL. The observation that
THP-1 monocytes support necroptosis even though levels of
hRIP1 and MLKL are low suggested that hRIP3 may be limiting
in HFs. MLKL levels increased as THP-1 monocytes were dif-
ferentiated into macrophages, where a slower migrating hRIP3
species was observed but was not investigated further.
Although THP-1-derived macrophages support human CMV
replication (57), these cells resist necroptosis. Although both
HT-29 and undifferentiated THP-1 cells are sensitive to
necroptosis, neither supports human CMV replication. These
data show that available necrosis-sensitive cells are unsuitable
for human CMV studies, leading us to modify CMV-permissive
HFs using a strategy applied in previous investigations of the
necroptosis pathway in mouse cells (12, 13).

Transduction of HFs with hRIP3 Confers Sensitivity to TNFR1-
dependent Necroptosis—HFs were transduced to express either
WT, ATP binding site K50A mutant, or MLKL-interaction site
S227A of hRIP3 (Fig. 2A). All resulting cells remained healthy
despite increased levels of transduced protein (Fig. 2B). Empty
vector (EV)-transduced cells showed similar low levels of
endogenous hRIP3 as nontransduced cells (compare with Fig.
1B). As expected from prior studies with mouse fibroblasts (12),
HFs transduced with a tetra-Ala RHIM substitution mutant
(mutRHIM) exhibited 10 –20-fold higher levels of mutant pro-
tein in a heterogeneous pattern distinct from WT hRIP3. Cells
transduced with kinase-inactive K50A mutant or a dual K50A/
mutRHIM mutant hRIP3 showed reduced levels of hRIP1 (Fig.
2C), indicating that RIP1 levels were influenced by kinase-inac-
tive RIP3 independent of RHIM interactions. Furthermore, lev-
els of hRIP1 did not increase markedly in the presence of the
proteasome inhibitor MG132, although the RIP3 kinase-inac-
tive mutant itself became modified as a result of this treatment
(Fig. 2D). From this evaluation, proteasome degradation does
not appear to contribute to the reduced RIP1 levels in cells
carrying kinase-inactive RIP3.

RIP3 levels are known to be limiting in cultured cells (11, 12,
22, 23), although cells in mouse tissues are susceptible to
necroptosis (12, 13). Once transduced with WT hRIP3, HFs
became sensitive to death induced by treatment with T alone,
T � V, T � S, or T � S � V (Fig. 2, E and F). The sensitivity of
cells to TNFR1-dependent death aligns with the host defense
contribution of signal transduction through this death recep-
tor. Cells resisted S alone or S � V across a broad range of IAP
antagonist concentrations from 0.01 to 3 �M (Fig. 2E). Treat-
ment with either T � S or T � S � V resulted in the greatest
levels of death, indicating that sensitization to T was markedly
enhanced by inhibition of polyubiquitination even in the
absence of caspase inhibition. Parenthetically, although RIP1
and RIP3 cleavage may be the mechanism through which Casp8
short circuits necroptotic machinery (82– 84), cleavage prod-
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ucts for either RIP1 or RIP3 were not detected during treat-
ment. Consistent with the expected signaling requirements,
HFs transduced with RIP3 RHIM (85), kinase-inactive (K50A)
(22, 85), or MLKL binding site (S227A) (31) mutants did not
support necroptosis (Fig. 2F). Furthermore, treatment with
RIP3 inhibitor GSK�840 (3 �M) (30) or RIP1 kinase inhibitor
necrostatin-1 (30 �M) (21) reversed the pattern of death (Fig.
2G). In addition to the requirement for pro-necrotic kinases
(17, 22), knockdown of hMLKL prevented death (Fig. 2, H and
I), demonstrating the key contribution (31, 32) of this recog-
nized RIP3 kinase target to execution (31, 32). These data indi-
cate that HFs support necroptosis as long as RIP3 levels are
increased above a critical threshold level. hRIP3-transduced
HFs, like control cells transduced with EV, exhibited modest

sensitivity to apoptosis induced by cycloheximide (C) alone or
T � C (60). Under these conditions, the addition of caspase
inhibitor potentiated necroptosis only in hRIP3-transduced
HFs and not in cells expressing K50A mutant (data not shown).
In a pattern that was distinct from TNFR1 activation, anti-Fas
antibody (F) activation of death receptor CD95/Fas alone did
not sensitize to death. F � C induced apoptosis in EV- or K50A
mutant-transduced cells and this death was reversed by the
addition of caspase inhibitor; however, in hRIP3-transduced
HFs, F � C � V induced the expected necroptosis pattern of
death (data not shown). In all, HFs became sensitive to death
receptor-initiated hRIP3-dependent necroptosis once engi-
neered to express sufficient hRIP3, as observed previously with
other human as well as mouse cells (11, 12, 22, 23).
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Cell Morphology, hRIP3 Localization, and hRIP3 Phosphoryl-
ation during TNFR1-dependent Necroptosis in HFs—Because
necroptosis proceeds via cell swelling and plasma membrane
permeabilization (2, 4), we employed time lapse analysis with
cell-impermeable dye to interrogate plasma membrane integ-
rity in hRIP3-expressing HFs (Fig. 3, A and B). Cells treated with
T � S � V developed increased SYTOX Green fluorescence by
2 h post-treatment (hpt) and affected nearly 80% of cells by 24
hpt. Although fewer than 20% of EV-transduced HFs stained
positive with SYTOX Green over a similar time course, this

level of death was eliminated in K50A mutant-expressing HFs,
most likely due to the reduction in RIP1 as well as dominant-
negative inhibition of endogenous hRIP3. When death of WT
hRIP3-expressing cells was evaluated by TEM, membrane dis-
ruption and other features characteristic of necroptosis were
observed (Fig. 3C). By IFA, hRIP3 showed a diffuse pattern in
the absence of treatment that developed into discrete foci
within 4 h of treatment (Fig. 3D). The proportion of the cells
with a disrupted membrane and discrete foci of hRIP3 was sim-
ilar to the number of SYTOX Green-positive cells.
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Next, we employed IB analysis to interrogate the impact of
treatment on hRIP3. hRIP3-expressing HFs undergoing
necroptosis showed the expected slower migrating pro-ne-
crotic hRIP3 forms within 2 hpt (Fig. 3E). These species
increased by 4 hpt as RIP1 levels declined, changes that did not
occur in hRIP3-K50A-transduced HFs, where low levels of
RIP1 remained constant. Consistent with the behavior of
necroptosis-sensitive HT-29 cells (22, 41), treatment with T �
S was sufficient to induce modification of hRIP3 that was mod-
estly enhanced in the presence of caspase inhibitor (Fig. 3F),
and this slow migrating hRIP3 band was eliminated by �-phos-
phatase treatment (Fig. 3G), affirming a modification of hRIP3
in HFs as observed previously in HT-29 cells (22, 41). Taken
together, these data demonstrate that hRIP3-expressing HFs

are highly sensitive to TNFR1-dependent necroptosis as long as
IAPs and/or Casp8 are compromised.

Murine CMV M45mutRHIM-induced Necroptosis in HFs—
Murine CMV M45mutRIM virus induces rapid DAI-RIP3-de-
pendent necroptosis in mouse cells independent of death
receptor signaling and RIP1 (12, 13). Although the virus-in-
duced pathway is distinct from TNFR1-dependent death (6, 7),
M45-encoded vIRA blocks RHIM signaling in either pathway
(12, 13). Like all CMVs, murine CMV replication is species-
restricted but is able to efficiently enter HFs and express early
genes without progressing into viral DNA replication (86 – 88).
hRIP3-transduced HFs became sensitive to M45mutRHIM-in-
duced death, assessed by either ATP levels (Fig. 4A) or perme-
ability to SYTOX Green (Fig. 4, B and C), following a course
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that developed more slowly than in permissive mouse cells (12,
13). The elaboration of murine CMV vIRA by parental K181
blocked necroptosis at times when M45mutRHIM virus
induced death. Similar to mouse cells, the addition of IAP
antagonist (Fig. 4D) or caspase inhibitor (Fig. 4E) failed to
increase the sensitivity of infected cells to death. Murine CMV
encodes the Casp8 inhibitor, vICA, an immediate early product
expressed in HFs that may sensitize cells to necroptosis (8).
hRIP3 RHIM, kinase-inactive and hMLKL interaction site
mutants all failed to support virus-induced necroptosis (Fig.
4F), consistent with the expected role of hRIP3 in phosphory-
lation and activation of hMLKL (17, 31, 32). When WT and
mutant M45 protein were subjected to IB, levels were found to
be comparable in virus-infected HFs (Fig. 4G). Unexpectedly,
protein levels in infected human cells were similar to mouse
fibroblasts despite the fact that HFs do not support murine
CMV replication. Importantly, M45-encoded vIRA interacted
with hRIP3 in a pattern that was similar to mouse cells (Fig. 4H)

shown in previous studies (12, 13). The interaction depended
on the RHIM and kinase activity of RIP3. Thus, M45mutRHIM-
infected HFs are sensitive to necroptosis, and WT murine CMV
prevents this pathway through the elaboration of vIRA
although HFs are nonpermissive for this mouse virus.

Human CMV Inhibits TNFR1-dependent Necroptosis—
Next, we investigated the impact of human CMV on necrop-
tosis induced by treatment with T � S � V. Following in-
fection for 24 h with Towne-BAC, TownevarRIT3, TB40E-
BAC4, Toledo, Merlin, AD169-BAC, AD169varDE, or
AD169varATCC (MOI of 3), hRIP3-expressing HFs were
treated for an additional 24 h to trigger TNFR1-dependent
necroptosis. All tested human CMV strains inhibited cell
death (Fig. 5A). Towne-BAC, TownevarRIT3, TB40E-BAC4,
Toledo, and Merlin strains exhibited the greatest resistance,
and AD169-BAC, AD169varDE, and AD169varATCC
showed intermediate levels of resistance (p � 0.05 compared
with mock). TownevarRIT3 and AD169varATCC protected to
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a different extent, although neither encodes a functional vICA
(53), so we employed Towne-BAC-derived Towne�UL36 virus
to assess the contribution of Casp8 inhibition to death patterns.
RIP3-expressing HFs infected with Towne�UL36 virus (57)
were more sensitive than Towne-BAC to T alone or T � S. The
addition of caspase inhibitor blocked death (Fig. 5B). Thus,
elaboration of vICA did not impact necroptosis but revealed its
expected contribution to suppression of apoptosis (53). In
order to exclude any impact of CMV on generation of ATP by
modifying mitochondrial respiration (89), we assessed uptake
of PI as direct measures of membrane permeability. RIP3-ex-
pressing HFs infected with Towne-BAC and treated with T �
S � V resisted PI uptake (Fig. 5, C and D) compared with mock-
infected cells. Surprisingly, a slower migrating, modified form
of RIP3 previously associated with necroptosis (22) remained
detectable, although cells remained viable and expressed IE1-
p72 at levels similar to untreated cells (Fig. 5E). Interestingly,
phosphorylated MLKL levels were readily detected, suggesting
that the virus-imposed block occurs downstream of this execu-
tioner. Treatment with �-phosphatase affirmed the phosphor-
ylation of hRIP3 (see Fig. 3G), consistent with the characteriza-
tion in HT-29 cells (22). Thus, inhibition of necroptosis by
human CMV influences steps that follow RHIM signal trans-
duction as well as RIP3 autophosphorylation and phosphoryla-
tion-dependent activation of MLKL, a pattern that is distinct
from either murine CMV (12, 13) or HSV (41).

We evaluated the impact of RIP3 expression on viral replica-
tion levels and found that both hRIP3-WT and hRIP3-K50A-
expressing HFs supported Towne-BAC, AD169-BAC, or
TB40E-BAC4 (MOI of 3) replication to levels observed in con-
trol HFs (Fig. 5F). In addition, treatment with T, T � S, or T �
S � V failed to compromise viral replication when assessed at 4
dpi, although overall titers were modestly reduced in cells with
combined treatment (Fig. 5G). These data indicate that viral
suppression of TNFR1-mediated, hRIP3-dependent necropto-
sis sustains cell viability to support production of viral progeny.

Human CMV Infection Inhibits M45mutRHIM Virus-in-
duced Programmed Necrosis—We employed superinfection
experiments with murine CMV in order to determine whether
human CMV blocks virus-induced necroptosis. hRIP3-ex-

pressing HFs were infected with Towne, AD169, or Toledo
strains (MOI of 3) followed 24 h later by murine CMV K181-
BAC or M45mutRHIM virus (MOI of 10). After an additional
48 h, cell viability was assessed. Whereas only 50% of HFs
exposed to M45mutRHIM virus survived these conditions,
80 –90% of M45mutRHIM-infected cells survived when HFs
were infected with human CMV independent of strain (Fig.
6A). The proportion of murine CMV-derived IE1-expressing
cells was similar in Towne-BAC virus and mock-infected
hRIP3-WT-expressing HFs, indicating that murine CMV was
not compromised by prior human CMV infection (Fig. 6B).
Furthermore, murine 3T3-SA cells exposed to Towne or
AD169 infection resisted M45mutRHIM-induced necroptosis
to equivalent levels (Fig. 6C). Although human CMV is species-
restricted, both of these strains efficiently enter and express
early gene products in mouse fibroblasts (90). The ability of
human CMV to block virus-induced necroptosis as well as
TNFR1-dependent necroptosis was most consistent with the
function of a virion component or early gene product acting on
necroptosis.

Human CMV IE1 Function Is Required for Suppression of
Necroptosis—In order to further evaluate the contribution of
human CMV functions to suppression of necroptosis, we first
conducted a time-of-addition experiment to determine when
during infection HFs became resistant to necroptosis. The via-
bility of HFs transduced with WT, K50A, and EV was deter-
mined by treating cells for 24 h with T � S � V starting at 6, 24,
or 48 hpi with Towne-BAC virus (MOI of 3) (Fig. 7A). Cells
remained sensitive to necrosis at 6 hpi but resisted death initi-
ated later, and, as expected, neither EV control nor K50A
mutant showed sensitivity. Inhibition of viral DNA synthesis
with the polymerase inhibitor phosphonoformate (300 �g/ml)
did not sensitize to necroptosis (Fig. 7B), indicating that sup-
pression develops independent of viral DNA synthesis. To
determine the impact of input virion or newly synthesized pro-
teins, we tested UV-inactivated virus. Virus particles failed to
confer resistance to cells at a time when viable virus suppressed
necroptosis (Fig. 7C). As expected, IB analysis revealed that
UV-irradiated virus delivered virion tegument protein (pp65)
but blocked expression of IE1 (Fig. 7D). Together with the time
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course (Fig. 7A), these data implicate a newly synthesized viral
or cellular gene product in viral suppression of TNFR1-depen-
dent necroptosis.

We next evaluated the contribution of the viral regulatory
protein IE1 (91), which dictates gene expression levels and
modulates innate immune signaling early after infection (92).
IE1-null virus (CR208) and repaired virus (CRQ208) (70) were
employed to test whether IE1 influenced suppression. CR208-
infected cells were insensitive to T � S � V, whereas IE1-ex-
pressing CRQ208-infected cells resisted necroptosis (Fig. 7, E
and F) as efficiently as parental TownevarRIT3 (see Fig. 5A). As
expected, EV- and hRIP3-K50A-transduced HFs resisted
necroptosis. The levels of replication, assessed in supernatants
of CRQ208- or CR208-infected (MOI of 3) cells, were not influ-
enced by the higher levels of hRIP3-WT or K50A mutant
expression (Fig. 7G), although induction of necroptosis at 1 dpi
significantly reduced CR208 virus yields in the supernatant at 4

dpi (Fig. 7H). Thus, human CMV-encoded IE1 protein is nec-
essary for the virus to block necroptosis.

DISCUSSION

Programmed cell death is an ancient means of eliminating
infected cells for purposes of host defense (1–3, 6). Large DNA
viruses encode inhibitors of apoptosis that sensitize cells to
necroptosis (2, 7, 41). The rodent herpesvirus murine CMV (12,
13) and the primate alphaherpesviruses HSV1 and HSV2 UL39
(41) encode R1 homologs that inhibit necroptosis by competing
with RHIM signaling partners of the pro-necrotic kinase, RIP3.
In addition, HSV1 ICP6 and HSV2 ICP10 directly bind the
death effector domain of Casp8 (50), thereby unleashing
necroptosis during infection (41). The betaherpesviruses
murine CMV and human CMV encode a conserved inhibitor of
Casp8 activation, vICA (54, 56, 57), with a capacity to sensitize
to necroptosis independent of virus infection (8). This alternate
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FIGURE 7. Human CMV IE1 function contributes to suppression of necrosis. A, relative viability of Towne-BAC virus-infected HFs (MOI of 3) with endogenous
hRIP3 (Empty) or expressing recombinant hRIP3-WT or hRIP3-K50A and subjected to T � S � V treatment beginning at 6, 24, or 48 hpi with assessment 24 h after
the start of treatment as described in the legend to Fig. 5A (n � 3). B, relative viability of Towne-BAC virus-infected hRIP3-WT-expressing HFs (MOI of 3) cultured
for 24 h treated with T � S � V in the presence or absence of phosphonoformate (PFA) (300 �g/ml) (n � 3). C, relative viability of HFs with endogenous hRIP3
(Empty) compared with hRIP3-WT- or hRIP3-K50A-expressing HFs exposed to Towne-BAC virus (UV (�)) (MOI of 3) or an equivalent dose of UV-irradiated
Towne-BAC stock (UV (�)) and treated with T � S � V for 24 h (n � 4). D, IB of pp65 and IE1 in hRIP3-WT-expressing HFs exposed to medium (Mock), Towne-BAC
virus (MOI of 3), or UV-irradiated Towne-BAC at 6 and 24 hpi, with �-actin loading control. E, relative viability of HFs with endogenous hRIP3 (Empty) compared
with hRIP3-WT- or hRIP3-K50A-expressing HFs exposed to IE1-null virus (CR208) or rescue IE1-expressing virus (CRQ208) (MOI of 3) treated with T � S � V for
24 h (n � 4). F, IB of pp65 and IE1 in Mock-, CR208- and CRQ208-infected hRIP3-WT-expressing HFs (MOI of 3) at 24 hpi, with �-actin loading control. G,
single-step growth curves of CR208 or CRQ208 viruses on HFs with endogenous hRIP3 (Empty) or expressing recombinant hRIP3-WT or hRIP3-K50A (MOI of 3).
Viral titers were determined on culture supernatants by plaque assay at the indicated time points (n � 3). The 0 dpi time point indicates the input virus
inoculum, and the detection limit of the plaque assay is indicated by a dashed line. H, virus titers in HFs with endogenous hRIP3 (Empty) or expressing
recombinant hRIP3-WT or hRIP3-K50A infected with CR208 or CRQ208 viruses (MOI of 3) followed at 24 hpi by treatment with T � S � V, with virus titers
determined on culture supernatants by plaque assay at 4 dpi (n � 3). Error bars, S.D.; *, p � 0.05; **, p � 0.001; #, not significant (p 
 0.05).
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cell death pathway is completely suppressed by M45-depen-
dent disruption of RHIM signaling (12, 13). It has remained a
mystery whether suppression of necroptosis plays an important
role in human CMV pathogenesis as it does for the biologically
similar rodent virus. Neither human CMV UL45 nor any other
viral protein has a RHIM (93), and UL45 mutant virus fails to
exhibit any phenotypic similarity to M45 mutants (94, 95). We
have shown here that human CMV blocks necroptosis but
employs a different strategy than murine CMV.

By making use of primary human fibroblasts transduced with
RIP3 to increase levels of this key pro-necrotic kinase, we gen-
erated human CMV permissive primary cells that support
necroptosis. Like transduced NIH3T3 cells (11, 12), the result-
ant hRIP3-expressing HFs became susceptible to TNFR1-
dependent necroptosis. Sensitivity to either TNFR1- of
M45mutRHIM-induced necroptosis was eliminated during
infection with human CMV, providing direct evidence of virus-
specific inhibition of this alternate death pathway. The mecha-
nism of inhibition was distinct from MCMV and appeared to
target a step downstream of RHIM signaling, after RIP3 kinase-
dependent phosphorylation of MLKL (29, 72). This execution
phase of necroptosis, which drives the disruption of the plasma
membrane, remains to be completely dissected. The mecha-
nism of human CMV suppression is likely to provide additional
insights into the precise steps driving execution of human cells.
Therefore, this work, together with our previous identification
of M45 and UL39 as RHIM-dependent inhibitors of necroptosis
(12, 13, 27, 41), establishes the core parameters through which
cell death pathways function in pathogenesis as well as the
diverse ways herpesviruses infecting rodents and humans suc-
cessfully counter these host defense pathways.

Human CMV IE1 expression is necessary for the suppression
of TNFR1-dependent necroptosis. The IE1 gene product, IE1-
p72 is primarily involved in regulating viral transcription dur-
ing productive replication (70) as an accessory to IE2-p86 (91).
IE1-p72 also impacts the host cell response to infection and
modulates the activation of interferon (92). IE1-p72 is a sup-
pressor of TNFR1-dependent apoptosis in HeLa cells (69),
although phenotypic evaluation of IE1 mutant viruses has not
revealed any impact on cell survival before our current study. In
addition to the work shown, IE1-p72-expressing ihf-ie1.3 cells
were tested and failed to resist necroptosis, suggesting that the
requirement here during infection is for optimal expression of
an early gene (70). Using permissive cells engineered to carry
adequate RIP3, IE1 mutant virus fails to protect from TNFR1-
dependent signal transduction, whereas parental virus effec-
tively protects cells from insult.

Death receptor signaling contributes to CMV biology, during
both productive infection and reactivation from latency.
Human CMV strains down-modulate expression of TNFR1
starting between 18 and 24 hpi (96 –98). Up to that time, the
UL138-encoded viral promoter of TNFR1 signaling sustains
the stability of TNFR1 and confers increased signal transduc-
tion that may also contribute to reactivation from latency (73,
74). In our hands, viral strains that lack UL138 (Towne and
AD169 variants) exhibit varying sensitivity to TNFR1-depen-
dent signaling, indicating that the viral promoter of TNFR1
signaling does not impact necroptosis in the assays we

employed here. Furthermore, strains that encode UL138
(TB40E-BAC4, Toledo, and Merlin) all showed resistance to
necroptosis similar to UL138-deficient Towne. These results
demonstrate a crucial contribution of IE1-p72 in establishing a
cellular environment that prevents necroptosis during viral
infection, acting either directly (92) or indirectly (91). Such
countermeasures certainly may be important during produc-
tive infection as well as during latency.

Observations that murine CMV M45 protects and
M45mutRHIM fails to protect human fibroblasts extend find-
ings made in necroptosis-sensitive HT-29 cells (41) and are
consistent with other work showing vIRA suppression of RHIM
signal transduction in both mouse and human cells (12, 17, 26,
27). It is important to note that the cellular processes leading to
M45mutRHIM activation of necroptosis in human cells has not
been the focus of this study, leaving the investigation of simi-
larities between human and mouse cells (13) for future investi-
gation. In mouse cells infected with M45mutRHIM, the
cytosolic dsDNA sensor, DAI, recruits RIP3 to trigger RHIM-de-
pendent necroptosis. Human CMV infection is already known
to be sensed by DAI, and this contributes to the stimulation of
an innate immune response (99). The activation of interferon
by DAI depends on RHIM signal transduction (100). The
apparent mechanism of IE1-dependent suppression of necrop-
tosis downstream of RHIM signal transduction as well as down-
stream of RIP3 kinase-dependent activation of MLKL aligns
with the ability of infected cells to sustain DAI-dependent
interferon-like responses (99). Further characterization of the
triggers and outcomes affecting necroptosis will require the use
of transduced cells similar to those described here to unveil
collaborating viral and host factors. Future studies will seek to
identify the precise viral or host cell inhibitors as well as to
characterize the behavior of potential sensitizers, such as the
Casp8 inhibitor, vICA, as well as the mitochondrial cell death
suppressors. It is important to recognize that the detection of
virus-induced necroptosis emerged from the finding that
murine CMV M45 is a powerful suppressor of RHIM signal
transduction (12, 17, 26, 27). Whereas mouse studies have sup-
ported the broad importance of necrotic death as an alternate
pathway of host defense, our findings here bring to light the
central role that RIP3 plays in human cells and reveals the exist-
ence of machinery that may contribute to viral pathogenesis as
well as inflammation and associated tissue damage.
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